马莎, 肖明
地下空间与工程学报. 2011, 7(3): 564-569.
为实现开挖结束后大型地下洞室围岩位移的长期预报,及时评价围岩长期稳定,结合位移混沌力学参数优化BP神经网络结构,建立混沌-动态时间延滞神经网络长期预报模型。将嵌入维数m作为神经网络的输入层个数,增加神经网络预报反馈模式,动态生成预报训练样本,选取较大的时间延迟τ,预测步数为h,使相点间的时间延迟为hτ,通过有限预测步数,实现位移长期预报。实例表明,模型计算速度快,计算稳定性好。当预测步数h≤5,预测次数不大于10次时,预报精度在10%以内,预报结果实时有效,实现了大型地下洞室位移的长期预报,为大型地下洞室围岩稳定性评价提供了快速有效的新思路。