Research on Hybrid Prediction Method for Displacement Intervals of Reservoir Colluvial Landslides

Deng Ziqiang, Li Linwei, Xiang Xiqiong, Wu Yiping, Miao Fasheng

Chinese Journal of Underground Space and Engineering ›› 2025, Vol. 21 ›› Issue (1) : 339-349.

PDF(4586 KB)
PDF(4586 KB)
Chinese Journal of Underground Space and Engineering ›› 2025, Vol. 21 ›› Issue (1) : 339-349. DOI: 10.20174/j.JUSE.2025.01.37

Research on Hybrid Prediction Method for Displacement Intervals of Reservoir Colluvial Landslides

  • Deng Ziqiang1,2, Li Linwei1,2, Xiang Xiqiong1,2, Wu Yiping3, Miao Fasheng3
Author information +
History +

Abstract

A novel hybrid interval prediction method of reservoir colluvial landslides with step-like displacements is proposed to solve two significant difficulties in traditional methods, i.e., the inaccurate physical meaning of displacement components and the low computational efficiency of interval prediction models. According to the mechanism of landslides, the critical level model was adopted to establish the mathematical function to achieve the prediction of trend displacement components at first. And then, based on the trend components, the periodic displacement components were obtained by applying the time series decomposition model. After that, the Multi-Objective Grey Wolf Optimization-based Support Vector Regression model under the Upper and Lower Bound Estimation was adopted to construct the prediction interval of periodic displacements. Finally, the prediction results of trend displacement and periodic displacement components were combined to build the cumulative displacement prediction interval. Through the verification of the Baishuihe landslide case, the hybrid model has high computational efficiency and accuracy with high-quality prediction intervals.

Key words

reservoir colluvial landslide / step-like displacement / interval prediction / upper and lower bound estimation / multi-objective grey wolf optimization / support vector regression

Cite this article

Download Citations
Deng Ziqiang , Li Linwei , Xiang Xiqiong , Wu Yiping , Miao Fasheng. Research on Hybrid Prediction Method for Displacement Intervals of Reservoir Colluvial Landslides[J]. Chinese Journal of Underground Space and Engineering, 2025, 21(1): 339-349 https://doi.org/10.20174/j.JUSE.2025.01.37

References

[1] 唐辉明.重大滑坡预测预报研究进展与展望[J]. 地质科技通报, 2022, 41(6): 1-13. (Tang Huiming. Advance and prospects of major landslides prediction and forecasting [J]. Bulletin of Geological Science and Technology, 2022, 41(6): 1-13. (in Chinese))
[2] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007(3): 433-454. (Huang Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2007(3): 433-454. (in Chinese))
[3] 李麟玮, 吴益平, 苗发盛, 等. 基于变分模态分解与GWO-MIC-SVR模型的滑坡位移预测研究[J]. 岩石力学与工程学报, 2018, 37(6): 1395-1406. (Li Linwei, Wu Yiping, Miao Fasheng, et al. Displacement prediction of landslides based on variational mode decomposition and GWO-MIC-SVR model[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 37(6): 1395-1406. (in Chinese))
[4] 黄海峰, 宋琨, 易庆林,等. 滑坡位移预测的支持向量机模型参数选择研究[J]. 地下空间与工程学报, 2015, 11(4): 1053-1059. (Huang Haifeng, Song Kun, Yi Qinglin, et al. Study on parameter value selection of support vector machine for displacement prediction of landslides[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(4): 1053-1059. (in Chinese))
[5] Miao F, Wu Y, Xie Y, et al. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model[J]. Landslides, 2018, 15(3): 475-488.
[6] 张抒,唐辉明,龚文平,等.基于物理力学机制的滑坡数值预报模式:综述、挑战与机遇[J]. 地质科技通报, 2022, 41(6): 14-27. (Zhang Shu, Tang Huiming, Gong Wenping, et al. Landslide numerical forecasting mode based on physical-mechanical mechanism: Overviews, challenges, and opportunities[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 14-27. (in Chinese))
[7] Lian C, Zhu L, Zeng Z, et al. Constructing prediction intervals for landslide displacement using bootstrapping random vector functional link networks selective ensemble with neural networks switched[J]. Neurocomputing, 2018, 291: 1-10.
[8] 马俊伟. 渐进式滑坡多场信息演化特征与数据挖掘研究[D]. 武汉:中国地质大学, 2016. (Ma Junwei. Evolution characteristics of multiple physics-based parameters and date mining technology f or progressive landslides[D]. Wuhan: China University of Geosciences, 2016. (in Chinese))
[9] Wang H, Long G, Shao P, et al. A DES-BDNN based probabilistic forecasting approach for step-like landslide displacement[J]. Journal of Cleaner Production, 2023, 394: 136281.
[10] Xing Y, Yue J, Chen C, et al. Prediction interval estimation of landslide displacement using adaptive chicken swarm optimization-tuned support vector machines[J]. Applied Intelligence, 2021, 51(11): 8466-8483.
[11] Khosravi A, Nahavandi S, Creighton D. Prediction interval construction and optimization for adaptive neurofuzzy inference systems[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(5): 983-988.
[12] Khosravi A, Nahavandi S, Creighton D, et al. Lower upper bound estimation method for construction of neural network-based prediction intervals[J]. IEEE Transactions on Neural Networks, 2010, 22(3): 337-346.
[13] 杜娟, 殷坤龙, 柴波. 基于诱发因素响应分析的滑坡位移预测模型研究[J]. 岩石力学与工程学报,2009,28(9): 1783-1789. (Du Juan, Yin Kunlong, Chai Bo. Study of displacement prediction model of landslide based on response analysis of inducing factors[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2009,28(9): 1783-1789. (in Chinese))
[14] Criss R E, Yao W, Li C, et al. A predictive, two-parameter model for the movement of reservoir landslides[J]. Journal of Earth Science, 2020, 31(6): 1051-1057
[15] Yao W, Li C, Guo Y, et al. Short-term deformation characteristics, displacement prediction, and kinematic mechanism of Baijiabao landslide based on updated monitoring data[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(9): 393.
[16] Wang Y, Tang H, Wen T, et al. A hybrid intelligent approach for constructing landslide displacement prediction intervals[J]. Applied Soft Computing, 2019, 81: 105506.
[17] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[18] Mirjalili S, Saremi S, Mirjalili S M, et al. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization[J]. Expert Systems with Applications, 2016, 47: 106-119.
[19] 黄海峰, 易武, 刘艺梁,等. 滑坡位移预测的SVR-MIV变量筛选方法研究[J]. 地下空间与工程学报, 2016, 12(1): 213-219. (Huang Haifeng, Yi Wu, Liu Yiliang, et al. Study on variables selection using SVR-MIV method in displacement prediction of landslides[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(1): 213-219. (in Chinese))
[20] 张俊, 殷坤龙, 王佳佳, 等. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34(2): 382-391. (Zhang Jun, Yin Kunlong, Wang Jiajia, et al. Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 34(2): 382-391. (in Chinese))
[21] Wang Y, Tang H, Wen T, et al. Direct interval prediction of landslide displacements using least squares support vector machines[J]. Complexity, 2020, 2020: 1-5.
[22] 许强, 黄润秋. 用加卸载响应比理论探讨斜坡失稳前兆[J]. 中国地质灾害与防治学报, 1995,6(2): 25-30. (Xu Qiang, Huang Runqiu. Studies on the precusor of slope instability applying to the load-unload response ratio theory[J]. The Chinese Journal of Geological Hazard and Control, 1995,6(2): 25-30. (in Chinese))
[23] 张文杰, 陈云敏, 贺可强. 加卸载响应比理论应用于堆积层滑坡预报[J]. 自然灾害学报, 2005,14(5): 83-87. (Zhang Wenjie, Chen Yunming, He Keqiang. Application of loading/unloading response ratio theory to prediction of accumulative landside[J]. Journal of Natural Disasters, 2005,14(5): 83-87. (in Chinese))
[24] 唐春龙. 加卸载响应比理论用于滑坡预测的机理分析[J]. 地下空间与工程学报, 2012, 8(3): 645-651. (Tang Chunlong. Mechanism analysis about load-unload response ratio theory in prediction of landside[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(3): 645-651. (in Chinese))
PDF(4586 KB)

65

Accesses

0

Citation

Detail

Sections
Recommended

/