川西高海拔地区冬季寒冷,路面冰雪问题严重威胁行车安全。而川西丰富的地热资源给解决路面冰雪问题提供了清洁高效的新方法。以海拔高度4 200 m的雀儿山隧道为例,通过数年监测明确了区域气象与温泉温度变化规律,进而研究了PVC与不锈钢管两种管道引入温泉融化路面冰雪效果及其对路面强度影响。结果表明:与间距24 cm布置的PVC管相比,间距40 cm的不锈钢管试验段路面冰雪融化时间降低了47%,保障了路面在30 h降下12 cm雪的环境中无积雪。与原路面相比,加入不锈钢管后抗压与抗折强度分别提高了 12.7%和11.3%,提高了路面的承载能力。研究成果对于高原和高纬度地区利用温泉消除道路冰雪具有借鉴意义。
Abstract
The west of Sichuan with high altitude gets cold weather in winter. The snow and ice problem on the road is a serious threat to traffic safety, while the abundant geothermal resources in the west of Sichuan provide a new method to solve the problem of snow and ice on road surface. Taking the Queershan tunnel with altitude 4,200m as an example, regional meteorological and hot spring temperature change rules were determined through years of monitoring. Then the effect of melting snow and road surface strength of PVC and stainless steel pipes with hot springs were analyzed. The results show that comparing with PVC pipes with spacing of 24 cm, the melting time of snow and ice on the road surface in the test section of stainless steel pipes with spacing of 40 cm is reduced by 47%, effectively melting snow and ice on the road surface in winter. It ensures no snow on the road in the environment of 12 cm snow falling in 30 h. Compared with the original pavement, the compressive strength and flexural strength of the stainless steel tube increase by 12.7% and 11.3%, respectively, and the bearing capacity of the pavement is improved. The results can be used for reference to eliminate road snow and ice by hot springs in high altitude areas.
关键词
温泉热能 /
路面冰雪 /
管道布置 /
抗折强度 /
抗压强度
{{custom_keyword}} /
Key words
hot spring heat /
snow and ice on roads /
pipeline layout /
bending strength /
compressive strength
{{custom_keyword}} /
中图分类号:
U458.1
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘小高, 许书红, 潘凌峰, 等. 冰雪天气高速公路行车安全预警等级标定[J]. 黑龙江交通科技, 2018(11): 165-169. (Liu Xiaogao, Xu Shuhong, Pan Lingfeng, et al. The calibration of freeway traffic safety warning level under snow and ice conditions[J]. Communications Science and Technology Heilongjiang, 2018(11): 165-169. (in Chinese))
[2]王兆瑞,许鹏. 地面表层温度场及隧道排水沟埋置深度设计探讨[J]. 地下空间与工程学报, 2015, 11(1): 149-155. (Wang Zhaorui, Xu Peng. Study on temperature field of ground surface and discussion of tunnel center drains depth design in cold region[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(1): 149-155. (in Chinese))
[3]吴立新, 程国柱, 秦丽辉, 等. 寒区冰雪期城市道路交通冲突与事故预测[J]. 交通运输系统工程与信息, 2016, 16(6): 216-221.(Wu Lixin, Cheng Guozhu, Qin Lihui, et al. Urban road traffic conflict and accident prediction during the period of ice and snow in cold region[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(6): 216-221. (in Chinese))
[4]刘伟. 山区高速公路不良气候条件下行车安全保障技术研究[D]. 西安:长安大学, 2015. (Liu Wei. Research on traffic safety technology under adverse climate in mountainous areas[D]. Xi'an:Chang'an University,2015. (in Chinese))
[5]任毅, 袁铜森, 万智,等. 国内外公路防冰除冰技术现状综述[J]. 湖南交通科技, 2014, 40(2):71-75. (Ren Yi, Yuan Tongsen, Wan Zhi, et al. The present situation of highway deicing technology at home and abroad[J]. Hunan Communication Science and Technology,2014, 40(2): 71-75. (in Chinese))
[6]孙鹏, 马西忠, 许建岭, 等. 浅谈融雪剂现状及对环境的影响和对策[J]. 盐业与化工,2015, 44(3): 4-6. (Sun Peng, Ma Xizhong, Xu Jianling, et al. Study on present situation and environmental influence and strategies of snow-melting agent[J]. Journal of Salt and Chemical Industry, 2015, 44(3): 4-6. (in Chinese))
[7]张旭. 融雪剂的现状及对环境的影响和对策[J]. 环境卫生工程,2017, 25(5): 64-66. (Zhang Xu. Deicing-salt Application status and its influence and corresponding countermeasures to the environment[J]. Environmental Sanitation Engineering, 2017, 25(5): 64-66. (in Chinese))
[8]王佳斌, 高琦, 刘锦超, 等. 发热电缆融雪技术在道路融雪化冰的应用分析[J]. 交通科技与经济, 2015, 17(2): 88-90. (Wang Jiabin, Gao Qi, Liu Jinchao, et al. Heating cable Technology related snow melt application of ice on roads[J]. Technology and Economy in Areas of Communications, 2015, 17(2): 88-90. (in Chinese))
[9]邱军领, 赖金星, 张广龙, 等. 季节性寒区隧道主动加热保温防冻方法及其试验[J]. 地下空间与工程学报, 2017, 13(4): 982-987. (Qiu Junling, Lai Jinxing, Zhang Guanglong, et al. A case study on antifreeze of tunnel in seasonal cold-region using the electric heat tracing[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(4): 982-987.
[10]陈志康, 李曙龙, 袁铜森, 等. 桥梁发热电缆除冰系统的热力学模拟[J].湖南交通科技,2016, 42(1): 59-64. (Chen Zhikang, Li Shulong, Yuan Tongsen, et al. Thermodynamic simulation of bridge heating cable deicing system[J]. Hunan Communication Science and Technology, 2016, 42(1): 59-64. (in Chinese))
[11]李炎锋, 胡世阳, 武海琴, 等. 发热电缆用于路面融雪化冰的模型[J]. 北京工业大学学报, 2008, 34(12): 1298-1303. (Li Yanfeng, Hu Shiyang, Wu Haiqin, et al. Modeling and analyzing on the electric heating cable system for deicing and melting snow on road surface[J]. Journal of Beijing University of Technology, 2008, 34(12): 1298-1303. (in Chinese))
[12]张宝强. 基于石墨烯薄膜的自发热路面融雪化冰研究[D]. 兰州:兰州大学, 2017. (Zhang Baoqiang. The deicing and snow melting investigation of graphene film-based self-heating pavement[D]. Lanzhou:Lanzhou University, 2017. (in Chinese))
[13]鲍梦捷. 内置碳纤维融冰路面设计方法[D]. 西安:长安大学,2017. (Bao Mengjie. Study on deicing pavement of built-in carbon fiber heating wire[D]. Xi'an:Chang'an University, 2017. (in Chinese))
[14]罗新欣.内置碳纤维发热电缆的桥面融冰化雪技术研究[D]. 西安:长安大学, 2015. (Luo Xinxin. A Study of applied technology in deicing and melting snow on the bridge surface by built-in carbon fiber heating wire[D]. Xi'an:Chang'an University, 2015. (in Chinese))
[15]朱俊, 朱耀庭, 江祥林, 等. 基于碳纤维电热法的公路桥梁融冰研究[J]. 交通节能与环保, 2008, 14(3): 83-87. (Zhu Jun, Zhu Yaoting, Jiang Xianglin, et al. Research of melting ice in highway bridges based on the carbon fiber electric heating method[J]. Energy Conservation and Environmental Protection in Transportation, 2008, 14(3): 83-87. (in Chinese))
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(51804261);四川省交通运输科技项目(2016B2-4)
{{custom_fund}}