珊瑚砂微生物固化体单轴损伤本构模型

方祥位, 李晶鑫, 李捷, 陈适, 姚志华

地下空间与工程学报 ›› 2018, Vol. 14 ›› Issue (5) : 1234-1239.

PDF(2537 KB)
PDF(2537 KB)
地下空间与工程学报 ›› 2018, Vol. 14 ›› Issue (5) : 1234-1239.
理论与试验研究

珊瑚砂微生物固化体单轴损伤本构模型

  • 方祥位1,2, 李晶鑫1, 李捷1, 陈适1, 姚志华3
作者信息 +

Damage Constitutive Model of Biocemented Coral Sand Columns under Unconfined Compression

  • Fang Xiangwei1,2, Li Jingxin1, Li Jie1, Chen Shi1, Yao Zhihua3
Author information +
文章历史 +

摘要

利用MICP技术固化南海某岛礁吹填珊瑚砂,对固化体试样进行了单轴抗压强度试验,基于损伤力学理论建立了单轴压缩条件下的固化体损伤本构模型。结果表明:利用MICP技术得到的珊瑚砂微生物固化体无侧限抗压强度均大于5 MPa,固化体单轴受压应力-应变曲线可大致分为压密阶段、弹性阶段、塑性阶段与破坏软化阶段。基于连续介质损伤力学理论,假定固化体微元强度服从双参数的Weibull分布,考虑应力-应变曲线特征进行参数简化后建立了单轴压缩条件下的损伤本构模型;模型采用经验拟合方程与损伤本构方程结合的分段函数形式,用试验资料初步验证了模型的合理性。

Abstract

Coral sand in island of South China Sea were biocemented by MICP method, unconfined compression tests of biocemented coral sand columns were conducted, and the damage constitutive model of biocemented coral sand columns under unconfined compression was proposed based on the theory of rock damage mechanics. The test and analysis results show that all unconfined compression strength of biocemented coral sand columns are more than 5 MPa, and the stress-strain curves of biocemented columns could be divided into approximate the compaction stage, elastic stage, plastic stage, failure and softening stage. Basing the theory of continuum damage mechanics and the assumption that the micro-unit strength of biocemented column obey Weibull distribution, the damage constitutive model under unconfined compression was established, and considering the characteristics of stress-strain curves. The model expression is piecewise function that made of empirical equation and damage constitutive equation. The rationality of model was preliminarily verified by tests data.

关键词

珊瑚砂微生物固化体 / 单轴受压 / 损伤 / 本构模型

Key words

biocemented coral sand columns / unconfined compression / damage / constitutive model

引用本文

导出引用
方祥位 , 李晶鑫 , 李捷 , 陈适 , 姚志华. 珊瑚砂微生物固化体单轴损伤本构模型[J]. 地下空间与工程学报, 2018, 14(5): 1234-1239
Fang Xiangwei , Li Jingxin , Li Jie , Chen Shi , Yao Zhihua. Damage Constitutive Model of Biocemented Coral Sand Columns under Unconfined Compression[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1234-1239
中图分类号: TU443   

参考文献

[1] Chu J, Ivanov V, Naeimi M, et al. Optimization of calcium-based bioclogging and biocementation of sand [J]. Acta Geotechnical, 2014, 9(2): 277-285.
[2]DeJong J T, Soga K, Banwart S A, et al. Soil engineering in vivo: Harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions[J]. Journal of the Royal Society Interface, 2011, 8(54): 1-15.
[3]方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10): 2773-2779. (Fang Xiangwei, Shen Chunni, Chu Jian, et al. Test of coral sand improvement with microbially induced calcium carbonate precipitation technology[J]. Rock and Soil Mechanics, 2015, 36(10): 2773-2779. (in Chinese))
[4]方祥位, 楚剑, 申春妮, 等. 利用微生物固化松散珊瑚砂的方法[P]. 中国专利: 201410050192.7, 2014. (Fang Xiangwei, Chu Jian, Shen Chunni, et al. The method of biocementation of coral sand[P]. China Patent, 201410050192.7, 2014. (in Chinese))
[5]欧益希, 方祥位, 张楠, 等. 溶液盐度对微生物固化珊瑚砂的影响[J]. 后勤工程学院学报, 2016, 32(1): 78-82. (Ou Yixi, Fang Xiangwei, Zhang Nan, et al. Influence of solution salinity on microbial biocementation of coral sand[J]. Journal of Logistical Engineering University, 2016, 32(1):78-82. (in Chinese))
[6]欧益希, 方祥位, 申春妮, 等. 颗粒粒径对微生物固化珊瑚砂的影响[J]. 水利与建筑工程学报, 2016, 14(2): 35-39. (Ou Yixi, Fang Xiangwei, Shen Chunni, et al. Influence of particle sizes of coral sand on bio-cementation[J]. Journal of Water Resources and Architectural Engineering, 2016, 14(2): 35-39. (in Chinese))
[7]李捷, 方祥位, 申春妮, 等. 含水率对珊瑚砂微生物固化体力学特性影响研究[J]. 工业建筑,2016, 46(12): 93-97. (Li Jie, Fang Xiangwei, Shen Chunni, et al. Influence of moisture content on mechanical properties of biocemented coral sand columns[J]. Industrial Construction, 2016, 46(12): 93-97. (in Chinese))
[8]李捷, 方祥位, 张伟, 等. 菌液脲酶活性对珊瑚砂微生物固化效果的影响[J]. 后勤工程学院学报,2016, 32(6): 88-91,96. (Li Jie, Fang Xiangwei, Zhang Wei, et al. Influence of activity of bacteria liquid on coral sand biocementation[J]. Journal of Logistical Engineering University, 2016, 32(6): 88-91,96. (in Chinese))
[9]李捷. 珊瑚砂微生物固化体强度及变形特性研究[D]. 重庆:后勤工程学院,2017. (Li Jie. Study on strength and deformation properties of biocemented coral sand columns[D]. Chongqing: Logistical Engineering University, 2017. (in Chinese))
[10]谢和平. 岩石、混凝土损伤力学[M]. 徐州:中国矿业大学出版社, 1990. (Xie Heping. Rocks and concrete damage mechanics[M]. Xuzhou: China University of Mining and Technology Press, 1990. (in Chinese))
[11]Kachanov M, Eric M. Interaction of a crack with certain microcrack arrays[J]. Engineering Fracture Mechanics, 1986, 25(5): 625-636.
[12]Lemaitre J. How to use damage mechanics[J]. Nuclear Engineering and Design, 1984, 80(2): 233-245.
[13]Krajcinovic D, Silva M A G. Statistics aspects of the continuous damage theory[J]. International Journal of Solids and Structures, 1987, 23(6): 733-750.
[14]童小东, 龚晓南, 蒋永生. 水泥土的弹塑性损伤试验研究[J]. 土木工程学报, 2002, 35(4): 82-85. (Tong Xiaodong, Gong Xiaonan, Jiang Yongsheng. Experimental study on elasto plastic damage of cemented soil[J]. China Civil Engineering Journal, 2002, 35(4): 82-85. (in Chinese))
[15]曹文贵, 赵明华, 刘成学. 基于Weibull分布的岩石损伤软化模型及其修正方法研究[J]. 岩石力学与工程学报, 2004, 23(19): 3226-3231. (Cao Wengui, Zhao Minghua, Liu Chengxue. Study on the model and its modifying method for rock softening and damage based on Weibull random distribution[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3226-3231. (in Chinese))
[16]]吴政, 张承娟. 单向荷载作用下岩石损伤模型及其力学特性研究[J]. 岩石力学与工程学报, 1996, 15(1): 55-61. (Wu Zheng, Zhang Chenjuan. Investigation of rock damage model and its mechanical behavior[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(1): 55-61. (in Chinese))

基金

国家自然科学基金(51479208);总后勤部基建营房部资助项目(CY114C022);国防科技项目基金(2201059)
PDF(2537 KB)

723

Accesses

0

Citation

Detail

段落导航
相关文章

/