考虑地基弹性抗力系数K随时间的变化,采用简支梁模型和弹性地基梁—简支梁复合模型,对沉管隧道管节沉放对接阶段结构纵向内力分布进行计算分析。改进半柔半刚性接头等效模型,采用定向支座结合剪切弹簧对接头进行模拟。考虑临时垫块的影响,对现有沉管隧道运营期结构受力计算方法进行修正。依托舟山沉管隧道,对管节结构纵向内力进行分析。研究结果表明:改进的接头模型可实现弯矩传递和两端位移差的限制,具有一定的合理性;某一管节沉放对接完成后,相邻的上一管节临时垫块部位的负弯矩发生较大幅度增大,可能引起该处顶板环向开裂;运营阶段管节临时垫块部位和桩基支承部位的负弯矩较大,需要重点监控。
Abstract
Considering that coefficient of foundation elastic resistance K changes over time, simply supported beam model and elastic foundation beam model-simply supported beam compound model are used to analyze the distribution of longitudinal internal force in tube of immersed tunnel during tube docking. The equivalent model of semi-flexible and semi-rigid joint is improved, adopting a directional support combined with a shear spring to simulate the joint. Considering the influence of cushion block, the existing force calculation method of immersed tube tunnel during service stage is modified. The longitudinal internal force in tube was analyzed based on Zhoushan immersed tunnel. The results show that: the improved joint model can transfer bending moment and limit the displacement difference of the sides of joint, so this joint model has certain rationality. After one tube sinking and docking, the negative bending moment in the position of cushion block of adjacent tube increases substantially, which may lead to circumferential cracking in roof. During service stage, the negative bending moments in the position of cushion blocks and pile cap of tubes are large, so these places are needed to be mainly monitored.
关键词
沉管隧道 /
理论模型 /
垫块 /
接头
{{custom_keyword}} /
Key words
immersed tunnel /
theoretical model /
cushion block /
joint
{{custom_keyword}} /
中图分类号:
U459.5
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈韶章. 沉管隧道设计与施工[M]. 北京: 科学出版社, 2002. (Chen Shaozhang. Design and construction of immersed tunnel[M]. Beijing:Science Press, 2002. (in Chinese))
[2]魏纲, 裘慧杰, 魏新江. 沉管隧道施工期间与工后长期沉降的数据分析[J]. 岩石力学与工程学报, 2013, 32(增2): 3413-3420. (Wei Gang, Qiu Huijie, Wei Xinjiang. Analysis of construction and post-construction settlement data caused by immersed tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Supp.2): 3413-3420. (in Chinese))
[3]魏纲, 裘慧杰, 杨泽飞, 等. 考虑回淤的沉管隧道基础层压缩模型试验研究[J]. 岩土工程学报, 2014, 36(8):1544-1552. (Wei Gang, Qiu Huijie, Yang Zefei, et al. Model tests on compression of base layer of immersed tube tunnels considering siltation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1544-1552. (in Chinese))
[4]潘永仁, 彭俊, Naotake Saito. 上海外环沉管隧道管段基础压砂法施工技术[J]. 现代隧道技术, 2004, 41(1): 41-45. (Pan Yongren, Peng Jun, Naotake Saito. Technology of sand injection for the foundation of immersed tube elements on the external ring of Shanghai[J]. Modern Tunnelling Technology, 2004, 41(1): 41-45. (in Chinese))
[5]唐英, 管敏鑫, 万晓燕. 高速铁路南京长江沉管隧道段的结构设计与计算[J]. 中国铁道科学, 1999, 20(4): 88-96. (Tang Ying, Guan Minxin, Wan Xiaoyan. Structural design and calculation for immersed high-speed railway tunnel crossing Yangtse River in Nanjing[J]. China Railway Science, 1999, 20(4): 88-96. (in Chinese))
[6]宁茂权. 沈家门港海底沉管隧道设计介绍[J]. 现代隧道技术, 2008, 45(6): 61-69. (Ning Maoquan. Design of Shenjiamengang undersea immersed tube tunnel[J]. Modern Tunnelling Technology, 2008, 45(6): 61-69. (in Chinese))
[7]史先伟, 杜孔泽. 广州鱼珠至长洲岛越江隧道工程方案论证[J]. 铁道标准设计, 2007(增2): 12-15. (Shi Xianwei, Du Kongze. Discussion on scheme of river-crossing tunnel engineering from Yuzhu to Changzhou island in Guangzhou[J]. Railway Standard Design, 2007(Supp.2): 12-15. (in Chinese))
[8]宾胜林. 沉管隧道节段接头力学行为试验研究与理论分析[D]. 西安: 长安大学, 2013. (Bin Shenglin. The experimental study and theoretical analysis on mechanical behavior of immersed tube tunnel section joint[D]. Xi’an: Chang’an University, 2013. (in Chinese))
[9]陈海军. 沉管隧道主体结构设计关键技术分析研究[J]. 隧道建设, 2007, 27(1): 46-50, 69. (Chen Haijun. Analysis and study on key technologies in design of main body of immersed tunnels[J]. Tunnel Construction, 2007, 27(1): 46-50, 69. (in Chinese))
[10]王贤辉. 结构优化在沉管隧道中的应用研究[D]. 上海: 同济大学, 2007. (Wang Xianhui. Research on the application of structure optimization in immersed tunnel engineering[D]. Shanghai: Tongji University, 2007. (in Chinese))
[11]刘建飞, 贺维国, 曾进群. 静力作用下沉管隧道三维数值模拟[J]. 现代隧道技术, 2007, 44(1): 5-9. (Liu Jianfei, He Weiguo, Zeng Jinqun. Three-dimensional simulation for the static behavior of immersed tube tunnels[J]. Modern Tunnelling Technology, 2007, 44(1): 5-9. (in Chinese))
[12]王黎怡, 徐伟. 沉管隧道正常运营阶段横断面受力分析[J]. 结构工程师, 2015, 31(3): 162-168. (Wang Liyi, Xu Wei. Internal force analysis of immersed tunnel cross-section during service stage[J]. Structural Engineers, 2015, 31(3): 162-168. (in Chinese))
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(51178428);浙江省自然科学基金(LZ12E08001)
{{custom_fund}}